Decreased levels of CXC-chemokines in serum of benzene-exposed workers identified by array-based proteomics.
نویسندگان
چکیده
Benzene is an important industrial chemical and environmental contaminant that causes leukemia. To obtain mechanistic insight into benzene's mechanism of action, we examined the impact of benzene on the human serum proteome in a study of exposed healthy shoe-factory workers and unexposed controls. Two sequential studies were performed, each using sera from 10 workers exposed to benzene (overall mean benzene air level >30 ppm) and 10 controls. Serum samples were subjected to anion-exchange fractionation and bound to three types of ProteinChip arrays (Ciphergen Biosystems, Fremont, CA) [hydrophobic (H50), metal affinity (IMAC3-Cu), and cation exchange (WCX2)]. Protein-expression patterns were detected by surface-enhanced laser desorption/ionization (SELDI)-TOF MS. Three proteins (4.1, 7.7, and 9.3 kDa) were consistently down-regulated in exposed compared with control subjects in both studies. All proteins were highly inversely correlated with individual estimates of benzene exposure (r > 0.75). The 7.7- and 9.3-kDa proteins were subsequently identified as platelet factor (PF)4 and connective tissue activating peptide (CTAP)-III. Initial proteomic results for PF4 and CTAP-III were subsequently confirmed in a single experiment using a ProteinChip-array-based immunoassay(Ciphergen Biosystems). The altered expression of the platelet-derived CXC-chemokines (40% and 63% for PF4 and CTAP-III, respectively) could not be explained by changes in absolute platelet counts. Thus, SELDI-TOF analysis of a limited number of exposed and unexposed subjects revealed that lowered expression of PF4 and CTAP-III proteins is a potential biomarker of benzene's early biologic effects and may play a role in the immunosuppressive effects of benzene.
منابع مشابه
بررسی میزان مواجهه با بنزن در کارگران پمپ بنزین از طریق ارزیابی محیطی و پایش شاخص زیستی
Background and objective: Benzene is one of the main pollutants in air and one of the most extensive chemical compound used in both natural and industrial processes. Benzene exposure leads to the most dangerous adverse health effects, particularly blood cancer. The aim of this study was to evaluate the gas station workers’ exposure to benzene by measuring benzene in breathing air and urinary tr...
متن کاملSystems biology of human benzene exposure.
Toxicogenomic studies, including genome-wide analyses of susceptibility genes (genomics), gene expression (transcriptomics), protein expression (proteomics), and epigenetic modifications (epigenomics), of human populations exposed to benzene are crucial to understanding gene-environment interactions, providing the ability to develop biomarkers of exposure, early effect and susceptibility. Compr...
متن کاملUse of 'Omic' technologies to study humans exposed to benzene.
'Omic' technologies include genomics, transcriptomics (gene expression profiling), proteomics and metabolomics. We are utilizing these new technologies in an effort to develop novel biomarkers of exposure, susceptibility and response to benzene. Advances in genomics allow one to study hundreds to thousands of single nucleotide polymorphisms simultaneously on small quantities of DNA using array-...
متن کاملبررسی غلظت ترانس ، ترانس ـ موکونیک اسید در ادرار کارگران مواجه با بنزن در یک واحد کک سازی
Introduction & Objective: Benzene is a light yellow liquid with aromatic odor and has effects to human body. The main and dangerous health effect of chronic exposure to benzene in workplace is hematopoetic system disease or blood cancer that it's primarily clinical figures are anemia, leucopenia, thrombocytopenia. The objective of this study was evaluation of benzene exposure by analysis of uri...
متن کاملExpression of CXC Chemokines Gro/KC and SDF-1a in Rat H4 Hepatoma Cells in Response to Different Stimuli
Background: It is now well established that several environmental stress factors cause activation of p38 MAP kinase and JNK in various cell types to produce chemokines. Objective: To investigate the expression of CXC chemokines Gro/KC and SDF- 1a in rat's H4 hepatoma cells in response to heat shock, hyperosmolarity and oxidative stress. Methods: Hepatoma cells were maintained in MEM medium. Cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 47 شماره
صفحات -
تاریخ انتشار 2005